Lead Paints Dangerous to Children Widely Sold Throughout the World

(Gothenburg, Sweden) Decorative paint containing levels of lead dangerous to children is widely available in more than 50 low- and middle-income countries, according to a new report released today by IPEN, an international organization promoting safe and sustainable chemical use. Lead in Solvent-Based Paints for Home Use -Global Report is the world’s most comprehensive review of lead in paint sold around the world and brings together data from all paint studies conducted since 2009 in 55 countries in Africa, Asia, Latin America and Eastern Europe. The report also includes never before released data from new studies conducted in 2017 in 19 countries.

“It is really quite shocking that manufacturers continue to produce lead paints for use in homes, schools and day care centers knowing that exposing children to lead can lead to permanent brain damage, especially since safer paint ingredients have been available and in use for decades,” said Dr. Sara Brosché, Campaign Manager, IPEN Global Lead Paint Elimination Campaign. “While some major producers have begun removing lead from their products, an alarming amount of lead paint containing lead levels dangerous to children continues to be sold in all regions of the world,” Brosché added.

The report found that a majority of decorative paints in 35 of the 55 countries included in the study contained high lead levels, and in 22 out of 55 countries, more than 25 percent of decorative paints contained dangerously high lead levels.

IPEN released Lead in Solvent-Based Paints for Home Use -Global Report as a part of worldwide activities during the International Lead Poisoning Prevention Week of Action (ILPPWA), October 22-28, 2017. The Week of Action is co-led by UN Environment and the World Health Organization (WHO). IPEN’s worldwide network of Participating Organizations are conducting Week of Action lead awareness activities in more than 35 countries.

In a statement prepared for this year’s ILPPWA, Dr. Maria Neira, Director of the Department of Public Health, Environmental and Social Determinants of Health for the World Health Organization (WHO), said: “Lead paint is a serious threat to the long term health of our children. Yet lead paint is still on sale in many countries and is used to decorate homes and schools. WHO calls on all countries to phase out lead paint by 2020 to protect the health of this and future generations.”

Although some of the countries included in the Global Report have enacted or are in the process of developing regulations limiting lead paint, the report also documents that the majority lack such regulation.

The report does document some recent progress in eliminating lead paint globally:

- Data demonstrating the need for lead paint regulation and enforcement is now available in 55 countries, with at least ten additional studies scheduled for release by IPEN and NGO partners in 2018.
- Binding regulatory controls limiting the lead content of paint have been enacted in recent years in a number of countries including India, Philippines, Nepal, Sri Lanka, Thailand, and Cameroon, with legally binding standards underway in a number of other countries.
- The African Community (EAC) has adopted mandatory standards restricting the use of lead paint that its six member states (Kenya, Tanzania, Uganda, Rwanda, Burundi, and South Sudan) are required to implement in their national regulatory systems.
- Akzo Nobel, the world’s second largest paint producer, has announced that it has removed lead from all its paint product lines, and the world’s largest paint producer, PPG, says its paints will be completely lead
free by 2020. In addition, major Asian paint producers in a number of countries have begun eliminating lead from their paint products.

- Four major manufacturers (Boysen and Davies in the Philippines; Elite Paints in Bangladesh; and Multilac in Sri Lanka) have been certified under the world’s first certification program, Lead Safe Paint®.

The report makes several recommendations to achieve the Global Alliance to Eliminate Lead Paint’s (GAELP) target date of 2020 for all countries having adopted legally binding laws, regulations, standards and/or procedures to control the production, import, sale and use of lead paints. GAELP is co-hosted by WHO and UN Environment and includes participation by industry, governments and non-governmental organizations (NGOs).

More country-level data on lead paint. Only about 34% of countries globally regulate lead in paint, and lead paints are still widely sold even in countries with regulation. Governments need good data to establish regulatory controls, effectively monitor lead use, or to ask paint manufacturers to voluntarily remove lead from their paints.

More governments should begin developing lead paint regulations. Government agencies can begin now to establish multi-stakeholder consultations to address how lead paint controls will be formulated, and the timeline for their entry into force. Regulations should include a 90 parts per million (ppm) total lead limit for all paints as well as budgets and protocols for monitoring and enforcement.

Paint manufacturers, paint industry trade associations and paint ingredient vendors should take voluntary action immediately to eliminate lead from all paints, with decorative and other paints used in and around homes and schools as a priority. Ethical manufacturers need not wait for government controls before they act. National, regional and international paint industry trade associations should send clear and strong signals to their members that now is the time to end all manufacture and sale of lead paints.

Donors should make significant new resources available for global lead paint elimination. Additional resources are needed for the collection of lead paint data and to assist national governments in developing and implementing lead paint standards and regulation.

Lead in household paints has been regulated in most highly industrial countries for more than 40 years. The United States and Canada established a regulatory limit of 90 ppm lead in response to growing concerns that even low-level lead exposures are harmful to children. Some other countries have established regulatory limits of lead in paint at 600 ppm lead.

Lead in paint is a problem because painted surfaces deteriorate with time and when disturbed. If there is lead in the paint, the lead contaminates household dust and soil surrounding the home, in schools and on playgrounds. Children ingest lead from dust and soil during normal hand to mouth behavior. Damage to children’s intelligence and mental development occurs, even when there are no obvious or clinical signs of lead poisoning. Recent WHO guidelines indicate that there is no known acceptable lead exposure level for children.¹

When children are exposed to lead, this tends to decrease their performance in school and their lifelong productivity as part of the national labor force. A recent study investigated the economic impact of childhood lead

¹*Childhood Lead Poisoning, World Health Organization, 2010, Pages 31-2:*

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6213a3.htm?ss_cid=mm6213a3_w See also: UNEP Report: Lead in Enamel Decorative Paints; National Paint Testing Results: A Nine Country Study, Section 3. Lead Exposure and its Health Effects.
exposure on national economies and estimated a total cumulative loss of $977 billion international dollars per year for all low and middle-income countries.²

###

IPEN. IPEN is a global network of over 500 NGOs in 116 countries working to reduce and eliminate the harm to human health and the environment from toxic chemicals and heavy metals.

Contact:

IPEN
Dr. Sara Brosché
Global Lead Paint Elimination Campaign Manager
+46 31 7995900
sarabrosche@ipen.org
Skype: sara.ipen

Manny Calonzo
Global Lead Paint Elimination Campaign Advisor
+632-4411846
manny@ipen.org
Skype: mannycalonzo

²*Economic Costs of Childhood Lead Exposure in Low and MiddleIncome Countries*, by Teresa M. Attina and Leonardo Trasande: Environmental Health Perspectives; DOI:10.1289/ehp.1206424; [http://ehp.niehs.nih.gov/1206424/].