A treaty that lacks adequate, legally-binding measures to prevent construction of many new coal-fired power plants, to control mercury use in ASGM and as a catalyst in chemical production and to minimize and prevent the generation of mercury-containing waste cannot be considered sufficient to prevent future Minamata-like tragedies.
Mercury waste and containing mercury disposal

Hazardous, medical and waste incinerators release tons of mercury every year. The mercury comes from use of industrial lamps and bulbs and electronic devices. Mercury emissions released to the air from waste are about 125 tonnes annually (6.5%). The recycling of scrap metal (second-ary smelting) can release mercury from auto parts like light switches. Regarding cement kilns, the mercury from coal, which is used to fuel the cement-manufacturing process, as well as fly ash. Cement production releases about 10 to 15% of global anthropogenic mercury emissions to the air.

The current Treaty text does not require the minimization of the generation of mercury-containing waste. In addition, there is no health-protective guidance that defines wastes as hazardous. Mercury emissions from burning waste dumps are ignored.

 Chloralkali industry

In chloralkali plants, mercury has been used as a flow-regulating agent. At present, however, mercury has been replaced by other more effective agents. It is a significant contributor to global mercury pollution as it remains the largest consumer of caustic soda worldwide and has been a significant contributor to global mercury pollution.

Other industrial production

Manufacturing of vinyl chloride monomer (VCM) is a major global mercury contributor because it can use large amounts of mercury as a catalyst. However, the use of mercury in VCM production results in mercury emissions from this source as zero.

Other industrial production

Manufacturing of vinyl chloride monomer (VCM) is a major global mercury contributor because it can use large amounts of mercury as a catalyst. However, the use of mercury in VCM production results in mercury emissions from this source as zero.

Other industrial production

Manufacturing of vinyl chloride monomer (VCM) is a major global mercury contributor because it can use large amounts of mercury as a catalyst. However, the use of mercury in VCM production results in mercury emissions from this source as zero.

Other industrial production

Manufacturing of vinyl chloride monomer (VCM) is a major global mercury contributor because it can use large amounts of mercury as a catalyst. However, the use of mercury in VCM production results in mercury emissions from this source as zero.

Other industrial production

Manufacturing of vinyl chloride monomer (VCM) is a major global mercury contributor because it can use large amounts of mercury as a catalyst. However, the use of mercury in VCM production results in mercury emissions from this source as zero.

Other industrial production

Manufacturing of vinyl chloride monomer (VCM) is a major global mercury contributor because it can use large amounts of mercury as a catalyst. However, the use of mercury in VCM production results in mercury emissions from this source as zero.

Other industrial production

Manufacturing of vinyl chloride monomer (VCM) is a major global mercury contributor because it can use large amounts of mercury as a catalyst. However, the use of mercury in VCM production results in mercury emissions from this source as zero.

Other industrial production

Manufacturing of vinyl chloride monomer (VCM) is a major global mercury contributor because it can use large amounts of mercury as a catalyst. However, the use of mercury in VCM production results in mercury emissions from this source as zero.

Other industrial production

Manufacturing of vinyl chloride monomer (VCM) is a major global mercury contributor because it can use large amounts of mercury as a catalyst. However, the use of mercury in VCM production results in mercury emissions from this source as zero.

Other industrial production

Manufacturing of vinyl chloride monomer (VCM) is a major global mercury contributor because it can use large amounts of mercury as a catalyst. However, the use of mercury in VCM production results in mercury emissions from this source as zero.